Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(8): e202300666, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533252

RESUMO

Cinnamomum species have applications in the pharmaceutical and fragrance industry for wide biological and pharmaceutical activities. The present study investigates the chemical composition of the essential oils extracted from two species of Cinnamomum namely C. tamala and C. camphora. Chemical analysis showed E-cinnamyl acetate (56.14 %), E-cinnamaldehyde (20.15 %), and linalool (11.77 %) contributed as the major compounds of the 95.22 % of C. tamala leaves essential oil found rich in phenylpropanoids (76.96 %). C. camphora essential oil accounting for 93.57 % of the total oil composition was rich in 1,8-cineole (55.84 %), sabinene (14.37 %), and α-terpineol (10.49 %) making the oil abundant in oxygenated monoterpenes (70.63 %). Furthermore, the acetylcholinesterase inhibitory activity for both the essential oils was carried out using Ellman's colorimetric method. The acetylcholinesterase inhibitory potential at highest studied concentration of 1 mg/mL was observed to be 46.12±1.52 % for C. tamala and 53.61±2.66 % for C. camphora compared to the standard drug physostigmine (97.53±0.63 %) at 100 ng/ml. These multiple natural aromatic and fragrant characteristics with distinct chemical compositions offered by Cinnamon species provide varied benefits in the development of formulations that could be advantageous for the flavor and fragrance industry.


Assuntos
Cinnamomum camphora , Cinnamomum , Óleos Voláteis , Cinnamomum camphora/química , Cinnamomum/química , Acetilcolinesterase , Óleos Voláteis/química , Preparações Farmacêuticas , Folhas de Planta/química
2.
An Acad Bras Cienc ; 95(suppl 1): e20220964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466542

RESUMO

The present study aimed to identify the bioactive constituents in the chloroform extract of H. spicatum rhizomes (HS-RCLE), further evaluated for its in-vitro pesticidal activities validating via molecular docking techniques. GC/MS analysis of HS-RCLE identified 14 compounds contributing 84.1 % of the total composition. The extract was dominated by oxygenated sesquiterpenes (43.1 %) with curcumenone (25.2 %) and coronarin E (14.8 %) as the major compounds. The extract recorded 89.4 % egg hatchability inhibition and 82.6 % immobility of Meloidogyne incognita, 66.7 % insecticidal activity on Spodoptera litura, 100 % phytotoxic activity on Raphanus raphanistrum seeds, and 74.7 % anti-fungal activity on Curvularia lunata at the respective highest dose studied. The biological activities were furthermore validated by using docking studies on certain proteins/enzymes namely acetylcholinesterase (PBD ID: IC2O), carboxylesterase (PDB ID: 1CI8), acetohydroxyacid synthase (PBD ID: 1YHZ) and trihydroxy naphthalene reductase (PBD ID: 3HNR). The bioactivity of the major constituents of the extract was predicted with the help of in silico PASS studies. HS-RCLE was observed to be a viable alternative source of natural pesticidal agents and paves the way for further studies on its mechanistic approaches and field trials to ascertain its pesticidal studies.


Assuntos
Praguicidas , Zingiberaceae , Clorofórmio , Simulação de Acoplamento Molecular , Acetilcolinesterase , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
An Acad Bras Cienc ; 94(3): e20210932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35920490

RESUMO

The aim of present study was to evaluate chemical composition and different biological activities viz., pharmacological and antioxidant activities of essential oils. The chemical composition of essential oils was determined by gas chromatography/mass spectrometry while biological activities were evaluated by standard protocols. Essential oils of Hedychium spicatum Sm. from two different ecological niches viz; Nainital (Site-I) and Himachal Pradesh (Site-II) of India revealed the qualitative and quantitative chemo-diversity. Both the oils were dominated by oxygenated terpenoids. Major marker compounds identified were eucalyptol, camphor, linalool, α-eudesmol, 10-epi-γ-eudesmol, and iso-borneol. Both the oils exhibited anti-inflammatory activity suppressing 17.60 % to 33.57 % inflammation at 100mg/kg b. wt. dose levels compared to ibuprofen-treated group (40.06 %). The sub-acute inflammation in oils-treated mice groups (50 and 100 mg/kg b. wt.) increased on day 2 but showed a gradual decrease from day 3 onwards and then recovered to normal by day 10. The antinociception percentage for doses (50 and 100 mg/kg b. wt.) ranged from 33.70-40.46 % in Site-I and 30.34-42.39 % in Site-II compared to standard drug, ibuprofen (43.08 %). The oils also showed a good antipyretic effect by suppressing Brewer's yeast (Saccharomyces cerevisiae) induced pyrexia after oil dose injection. The oils also exhibited good antioxidant activity.


Assuntos
Ibuprofeno/química , Óleos Voláteis , Zingiberaceae , Animais , Antifúngicos/farmacologia , Antioxidantes/análise , Cânfora/análise , Cânfora/farmacologia , Eucaliptol/análise , Ibuprofeno/análise , Ibuprofeno/farmacologia , Inflamação , Camundongos , Óleos Voláteis/química , Óleos de Plantas/química , Rizoma/química , Zingiberaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...